Wykład
Wzory fundamentalne
funkcja | pochodna funkcji | przykład |
---|---|---|
x^\alpha | \alpha x^{\alpha-1} | (x^{1/2})' = \frac{1}{2}x^{-1/2} |
\exp x | \exp x | (\exp 2x)' = 2 \exp 2x |
\ln x | \frac{1}{x} | (\ln x)' = \frac{1}{x} |
\sin x | \cos x | (\sin 3x)' = 3 \cos 3x |
\cos x | -\sin x | (\cos \frac12 x)' = -\frac12 \sin \frac12 x |
wyrażenie | pochodna | przykład |
---|---|---|
\alpha f(x) + \beta g(x) | \alpha f'(x) + \beta g'(x) | (3x-5\sin x)'= 3-5 \cos x |
f(x) g(x) | f'(x) g(x)+ f(x) g'(x) | (x\exp x)' = \exp x + x \exp x |
\frac{1}{g(x)} | \frac{-g'(x)}{g^2(x)} | \left( \frac{1}{x^2}\right)'=\frac{-2x}{x^4}=\frac{-2}{x^3} |
\frac{f(x)}{g(x)} | \frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} | \left( \frac{x}{\exp x}\right)' = \frac{\exp x - x \exp x}{\exp 2x} = \frac{1 - x}{\exp x} |
f(g(x)) | f'(g(x))\cdot g'(x) | (\sin x^2)'= 2x\cos x^2 |
f^{-1}(x) | (f^{-1}(x))' = 1/f'(y) | y=x^2, x=\sqrt{y} \implies y'=2x, x'=\frac{1}{2x} = \frac{1}{2\sqrt{y}} |
Zadania do wykonania ręcznie
- Oblicz funkcje pochodne następujących funkcji:
-
- y(x) = -3x+3
- y(x) = \pi x + \sin(1)
- y(x) = \sin(2)
- y(x) = x^7
- y(x) = 2x^3 - 3x^2 + 8x - 9
- y(x) = ax^2 + 2ax + a
- y(x) = 6 x^{1/3}
- y(x) = x^{\pi}
- y(x) = \sqrt{x}
- y(x) = \cos(x) + \sin(x)
- y(x) = \exp(x)
- y(x) = \ln(x)
- y(x) = 2\sin(x) \cos(x)
- y(x) = x\sin(x)
- y(x) = xe^x
- y(x) = \ln(x) \exp(x)
- y(x) = (x+1)(x+1)
- y(x) = (x+1)\exp(x)
- y(x) = \ln(-x)
- y(x) = \sin(-x)
- y(x) = \sin(x^2)
- y(x) = \exp(-2x)
- y(x) = \exp(-3\sin(x))
- y(x) = \frac{1}{x+1}
- y(x) = \frac{x}{x+1}
- y(x) = \frac{1}{\sin(x)}
- y(x) = \frac{1}{1+\sin(x)}
- y(x) = \frac{1}{\sin(x^2)}
- y(x) = \frac{1}{\sin(x^2)+1}
- y(x) = \sqrt{x+1}
- y(x) = \log_{10}x
- y(x) = 10^x
- y(x) = x^x
- y(x) = arc\, cos(x)
-
- Policz pochodną z definicji ilorazu różnicowego dla
- 3x+1
- x^2+1
- stałej a
- Policz ręcznie funkcję prędkości i przyspieszenia od czasu dla podanych poniżej ruchów. Jakie było położenie, prędkość i przyspieszenie w piątej sekundzie?
- x(t)=150+50t-4.5 t^2
- x(t)=sin(t)
- x(t)=t-1/(t+1)
- Biorąc funkcje z poprzedniego zadania narysuj w Octavie na jednym wykresie x,v,a dla każdego z poszczególnych przypadków z zadania wyżej (nie zapomnij o legendzie tak by wiadomo co pokazuje dana linia). Czy wartości dla t=5 pokrywają się z ręcznymi obliczeniami?
- O pewnych funkcjach f i g wiadomo, że g(0) = 0, g'(0) = 2, f'(0) = 4. Ile wynosi pochodna funkcji złożonej f(g(x)) w punkcie x=0?
- Korzystając z reguły de l’Hospitala znajdź granice niewłaściwe
- \lim_{x\to 0} \frac{\sin{x}}{x}
- \lim_{x\to 0} \frac{1-\cos{x}}{x^2}
- \lim_{x\to 0} \frac{{\sqrt{1+x}-1}}{x}
- \lim_{x\to \infty} \frac{\ln x}{x}
- \lim_{x\to \infty} \frac{\exp x}{x}
- \lim_{x\to \infty} \exp (x)\cdot \frac{1}{x}
- Dlaczego reguły de l’Hospitala nie można użyć do wyznaczenia granicy poniżej? \lim_{x\to 0} \frac{x+1}{x-1}
- Uogólnij regułę Leibniza na przypadek pochodnej iloczynu trzech funkcji: (f\cdot g \cdot h)'.